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ABSTRACT

Let G be a graph with the vertex set V (G), edge set E(G). A
vertex labeling is a bijection f : V (G) → {1, 2, . . . , |V (G)|}. The
weight of e = uv ∈ E(G) is given by g(e) = min{f(u), f(v)}.
The min-sum vertex cover (msvc) is a vertex labeling that min-
imizes the vertex cover number µs(G) =

∑
e∈E(G) g(e). The

minimum such sum is called the msvc cost. In this paper, we
give both general bounds and exact results for the msvc cost on
several classes of graphs.
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1 Introduction and motivation

Let G be a graph with the vertex set V (G) and edge set E(G). A vertex
labeling is a bijection f : V (G) → {1, 2, . . . , |V (G)|}, and the weight of an
edge e = uv ∈ E(G) is given by g(e) = min{f(u), f(v)}. For simplicity, we
call a vertex labeling a labeling of G. The cost of a labeling f is µf (G) =∑
e∈E(G)

g(e). A min-sum vertex cover (msvc) or an msvc labeling is a labeling

that minimizes µf over all choices of f . Formally, µs(G) = min
f

µf (G),

where µs(G) is called the msvc cost of the graph G. Given a labeling f , we
define a cost set Sf (G) = {u ∈ V (G) : ∃e ∈ E(G), f(u) = g(e)}. That is,
Sf (G) is the subset of V (G) that induces the weights on the edges. A cost
set associated with an msvc labeling is called an msvc set. Note that an
msvc set does not have to be a minimum size cost set (See section 6).

1Research supported by the Naval Postgraduate School RIP funding.
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Consider the graph in Figure 1 below. The function f(v1) = 4, f(v2) =
5, f(v3) = 1, f(v4) = 2, and f(v5) = 3 is a labeling of G with cost µf (G) =
12. Under f , {v3, v4, v5} is a cost set. On the other hand, the function f∗

with f∗(vi) = i is another labeling of G with cost µf∗(G) = 9. Under f∗,
{v1, v2} is a cost set. It is easy to see that µs(G) = µf∗(G) = 9, so we say
{v1, v2} is a minimum cost set, and that graph G has an msvc cost of 9.
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Figure 1: Example for Discussion of Labeling and Cost Sets

Given a graph G, an independent set I(G) is a subset of V (G) such
that no two vertices in I(G) are adjacent. The maximum independent set
problem is to find an independent set with the largest number of vertices in a
given graph. We use the notation α(G) to denote the maximum cardinality
of an independent set in a graph G. A vertex cover C(G) is a subset of
V (G) such that each edge of G is incident with a vertex in C(G). The
minimum vertex cover problem seeks a set C(G) of smallest cardinality.
We use the notation β(G) to denote the minimum cardinality of a vertex
cover in a graph G. The decision versions of these problems are both NP-
Complete [3].

It is easy to see that any minimal vertex cover is a cost set. Given
a graph G and a minimal vertex cover S ⊆ V (G), select a function f :
V (G) → {1, 2, . . . , |V (G)|} so that vertices in S get labels in {1, 2, . . . , |S|}.
Then g is dictated by f . Each vertex in S is adjacent to at least one vertex
in V (G)−S. Edges connecting a vertex u ∈ S with a vertex v ∈ V (G)−S
will get weight f(u). Since S is a minimal vertex cover, each weight in
{1, 2, . . . , |S|} will be realized for some edge, and g(e) ≤ |S| holds for all
e ∈ E(G). This allows us to make the following observation.

Observation 1.1 For any graph G, µs(G) is bounded from above by the
cost of any labeling f that uses labels {1, 2, . . . , |S|} on the vertices of a
minimal vertex cover S.

Since any labeling of G provides an upper bound on µs(G), this obser-
vation is certainly not surprising. But we will see that for certain classes
of graphs, vertex covers and also independent sets will play a role in estab-
lishing improved bounds.

2



2 Bounds on µs for connected graphs

Proposition 2.1 For a connected graph G,

µs(G) ≥ β2 + 3β − 2
2

, (1)

where β = β(G) is the vertex cover number of G. The bound is sharp.

Proof. Let G be a connected graph. Let B = {v1, v2, . . . , vβ} be a min-
imum vertex cover. Thus for each vi ∈ B (1 ≤ i ≤ β) there is an edge ei

that is incident with only one vertex in B (otherwise B is not minimum
vertex cover). Also, since G is connected, there are at least β − 1 edges
different from ei, say gj (1 ≤ j ≤ β − 1). Since each edge ei will receive
the weight f(vi) with f(vi) 6= f(vi′) (1 ≤ i, i′ ≤ β), and each edge gj will
receive a weight of at least 1, it follows that

µs(G) ≥
β∑

i=1

i + (β − 1) =
β(β + 1)

2
+ (β − 1) =

β2 + 3β − 2
2

.

To see the sharpness of the bounds, consider the graph G in Figure 2 below.
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Figure 2: The graph G

Then the msvc set {x} ∪ {zi : 1 ≤ i ≤ n− 1} gives the sharpness of the
bound (1). 2

Proposition 2.2 For a connected graph G with n vertices,

n− 1 ≤ µs(G) ≤ n(n2 − 1)
6

, (2)

and the bounds in (2) are sharp.

Proof. Let G be a connected graph of order n. Then G has at least n−1
edges of weight at least 1, so µs(G) ≥ n− 1. For the second inequality, let
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G be any connected graph. The vertex labeled i has at most n−i neighbors
with labels exceeding i. Therefore at most n − i edges have weight i, and
it follows that

µs(G) ≤
n∑

i=1

i(n− i) =
n∑

i=1

(ni− i2)

= n · n(n + 1)
2

− n(n + 1)(2n + 1)
6

=
n(n2 − 1)

6
.

Sharpness of the first inequality follows from labeling the center vertex
of K1,n−1 with 1, and sharpness of the second follows from any labeling of
Kn. 2

Note, though, that if G 6= Kn, then

µs(G) ≤ n(n2 − 1)
6

− (n− 1) =
(n− 1)(n− 2)(n + 3)

6
.

Thus not all integer pairs (n, k), with n− 1 ≤ k ≤ n(n2−1)
6 , can be realized

as the order and cost of some connected graph G; for an example, consider
the pair (n, n − 1). In particular, if k cannot be written as

∑n−1
i=1 ai · i

with ai ≤ n− i, then there is no graph G of order n for which µs(G) = k.
Although k =

∑n−1
i=1 ai · i, with ai ≤ n − i, is a necessary condition, it is

not sufficient. For example, there is no connected graph G of order 4 for
which µs(G) = 7.

Note that if H is a proper induced subgraph of G, then the min-sum
vertex cover of G is a set cover of H (possibly minimum), which gives the
following relation for the costs of the graphs: µs(H) ≤ µs(G). Moreover,
since H 6= G the inequality is strict, and µs(H) < µs(G).

3 Bounds on µs for regular graphs

In this section, we consider µs for r-regular graphs.

Theorem 3.1 If G is an r-regular graph with n vertices, then

r
α(α + 1)

2
≤ µs(G) ≤ r

β(β + 1)
2

,

Where α = α(G) and β = β(G). The bounds are sharp.

Proof. For the first inequality, since G is r-regular, each label on V (G)
can be given to at most r edges. If we label the vertices of any inde-
pendent set I(G) with labels 1, 2, . . . , |I(G)|, then each weight in the set
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{1, 2, . . . , |I(G)|} gets assigned to exactly r edges. Then, selecting a maxi-
mum independent set and simply adding up the contribution at each inde-
pendent vertex, a lower bound on µs(G) is r

∑
1≤i≤α(G) i = r α(G)(α(G)+1)

2 .
The second inequality is just the application of Observation 1.1 to the r-
regular case. The double inequality is sharp, with equality for the complete
bipartite graph Kr,r. 2

In essence, the first inequality represents the best possible use of the labels
{1, 2, . . . , α(G)}. Also note that for r-regular graphs with α(G) = β(G),
the inequalities of Theorem 3.1 collapse around µs(G). But since the com-
plement of any independent set is a vertex cover, we know α(G) + β(G) =
|V (G)| = n. This implies that for a regular graph α(G) = β(G) = n

2 for
such graphs, and a corollary follows. The double inequality is sharp, with
equality for the complete bipartite graph Kr,r.

Corollary 3.2 If G is an r-regular graph with α(G) = β(G), then

µs(G) =
r(n2 + 2n)

8
.

Proof. Substitute n
2 for α and β in Theorem 3.1. 2

Since computing α(G) and β(G) is not trivial, the result of Theorem
3.1 can be used to get the following.

Corollary 3.3 If G has girth 2k + 3, k ≥ 2 then

µs(G) ≥
r
(

n
2

) k−1
k r

1
k

((
n
2

) k−1
k r

1
k + 1

)
2

. (3)

A simpler bound (under the previous assumptions) but slightly weaker is

µs(G) ≥
r
√

nr/6
(√

nr/6 + 1
)

2
. (4)

Proof. Shearer in [4] states that, under the above assumptions, the inde-
pendence number has the lower bound

α(G) ≥
(n

2

) k−1
k

r
1
k ,

which gives us equation (3).
If G has no cycles of length 3 or 5, Denley [1] proved the simpler result

α(G) ≥
√

nr/6 producing the bound in equation (4). 2
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Proposition 3.4 If G is an r-regular graph with n vertices, then

rn(n + 2)
8

≤ µs(G) ≤ n(n + 1)
6

and the inequalities are sharp.

Proof. Feige et al. [2] showed that µs(G) satisfies

e(n + 2)
4

≤ µs(G) ≤ e(n + 1)
3

,

where e is the number of edges of an r-regular graph G. Since 2e = nr, we
obtain

n(n + 2)r
8

≤ µs(G) ≤ n(n + 1)r
6

.

The double inequality is sharp, with lower equality for the complete bipar-
tite graph Kr,r, and upper equality for the complete graph Kn. 2

4 Elementary results on µs

Proposition 4.1 (a) For the star K1,n−1, we have µs(K1,n−1) = n− 1.

(b) For the path Pn on n vertices, we have µs(Pn) =
⌊

n2

4

⌋
.

(c) For the cycle Cn on n vertices, we have

µs(Cn) =

{
n(n+2)

4 if n is even
(n+1)2

4 if n is odd.

(d) For the wheel W1,n on n + 1 vertices, we have

µs(W1,n) =

{
n(n+6)

4 if n is even
(n+1)2+4n

4 if n is odd.

Proof.

(a) The labeling that assigns 1 to the central vertex, and the rest of the
labels to the other vertices is an msvc label that gives the result.

(b) Let Pn : v1, v2, . . . , vn be the path on n vertices, and define a labeling
f : V (Pn) → {1, 2, . . . , n} such that f(v2i) = i for each 1 ≤ i ≤

⌊
n
2

⌋
,
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and any unused labels to the rest of the vertices. This induces the
weights on the edges of the graph, and so for n odd

µs(Pn) ≤ 2

n−1
2∑

i=1

i = 2
n−1

2

(
n−1

2 + 1
)

2
=

n2 − 1
4

=
⌊

n2

4

⌋
,

and for even n

µs(Pn) ≤ 2

n
2−1∑
i=1

i +
n

2
= 2

(
n
2 − 1

)
n
2

2
+

n

2
=

⌊
n2

4

⌋
.

Since deg vi ≤ 2, each label on a vertex induces weights on at most two
edges, so the above labeling is an msvc labeling. The result follows.

(c) Similar to (b).

(d) The labeling that assigns the label 1 to the central vertex, and 2
through n + 1 to every other vertex of the outer cycle is an msvc
labelinmg with µs(W1,n) = n + µs(Cn) = n(n+6)

4 if n is even, and

µs(W1,n) = n + µs(Cn) = (n+1)2+4n
4 if n is odd. 2

The star can be generalized to the multi-star Km(a1, a2, . . . , am), which
is formed by joining ai ≥ 1 (1 ≤ i ≤ m) pendant vertices to each vertex xi

of a complete graph Km : x1, x2, . . . , xm. The 2-star and 3-star are shown
in Figure 3.
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Figure 3: 2-star K2(a1, a2) and 3-star K3(a1, a2, a3)
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The first claim of Proposition 4.1 can be generalized to any multi-star.

Proposition 4.2 The multi-star Km(a1, . . . , am), with a1 ≥ a2 ≥ · · · ≥
am ≥ 1, has

µs(Km(a1, . . . , am)) =
m∑

i=1

iai +
m(m2 − 1)

6
.

Proof. Since a1 ≥ a2 ≥ · · · ≥ am ≥ 1, it follows that the central vertices
of the multistar Km(a1, . . . , am) form a minimum msvc set

µs(Km(a1, . . . , am)) = (a1 + m− 1) + 2(a2 + m− 2) + · · ·
+(m− 1)(am−1 + 1) + mam

=
m∑

i=1

i(ai + m− i) =
m∑

i=1

iai +
m(m2 − 1)

6
,

which proves the result. 2

5 µs for biregular bipartite graphs

A graph G is biregular if V (G) = V1∪V2 where all vertices in V1 have degree
r, and all vertices in V2 have degree s, for natural numbers r, s. Note that
if r = s, then we obtain a regular graph. If r 6= s then we call G strictly
biregular. If the graph G happens to be bipartite, then we call it biregular
bipartite or strictly biregular bipartite, accordingly.

Theorem 5.1 Let G be a biregular bipartite graph on partite sets V1 =
{v1, . . . , vp} and V2 = {w1, . . . , wq}, where p ≤ q, all vertices in V1 have
degree r, and all vertices in V2 have degree s, for natural numbers r and s.
Then

µs(G) =
r · p(p + 1)

2
.

Proof. We first consider G to be a strictly biregular bipartite graph. Since
p < q and pr = qs, it follows that r > s . Since G is connected, s ≥ 1.
Since any labeling of G with V1 as a cost set yields the same cost, it follows
that µs(G) ≤ r·p(p+1)

2 . We now show that this is optimal. Given a cost set
S, let Ni denote the number of edges of weight i, where 1 ≤ i ≤ n. Clearly

n∑
i=1

Ni = |E(G)| = rp and, since ∆(G) = r, we know that Ni ≤ r for all

i. With any labeling f as described above, we have Ni =
{

r, if i ≤ p;
0, if i > p.
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The resulting cost is µf (G) =
rp(p + 1)

2
. Now suppose that we have some

labeling h for which Sh

⋂
V2 6= ∅. Then Ni < r for at least one index

i ≤ p, so
p∑

i=1

Ni < rp and therefore Nk ≥ 1 for some k > p. But then

µh(G) ≥ µf (G)+1, and it follows that V2

⋂
S = ∅ in every optimal solution.

If G is a biregular graph that is not strictly biregular graph, then r = s
and so either V1 or V2 is an msvc set with the msvc cost of

µs(G) =
r · p(p + 1)

2
,

as desired. 2

The following two corollaries are direct consequences of Theorem 5.1.

Corollary 5.2 Let Qn be the n-cube with 2n vertices, where n ≥ 2. Then
µs(Qn) = n2n−2(2n−1 + 1).

Corollary 5.3 Let Ka,b be the complete bipartite graph with a + b vertices

(a ≤ b). Then µs(Ka,b) =
ba(a + 1)

2
.

Proposition 5.4 Let G ∼= Cn × K2 be the prism graph with 2n vertices.
Then

µs(G) =

{
3n(n+1)

2 , if n is even;
3n2+3n+2

2 , if n is odd.

Proof. If n is even, we observe that G is 3-regular with α(G) = β(G) = n,
and we can apply Corollary 3.2 (although note that the term n is used in
different senses).

If n is odd, then a maximum independent set of G has n− 1 elements;
this is seen easily by observing that one cannot have more than (n − 1)/2
independent vertices either on the inside or the outside cycle, and one can
take exactly (n − 1)/2 vertices on either of the two cycles, which form an
independent set. We display such a choice in Figure 4, where the solid
vertices form an independent set.

We now label the independent set in Figure 4 with labels 1, 2, . . . , n− 1
for a contribution to the cost of 3n(n−1)

2 . This labeling uses all but 3 edges
which may form a copy of P3, or a copy of P2 together with a copy of K2, or
3 copies of K2. In the first two cases, these three edges will have the same
contribution to the cost, namely 2n+(n+1), and in the last case they will
have a contribution of n + (n + 1) + (n + 2). Regardless whether the last
case occurs, the msvc cost will be given by one of the first two choices.
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Figure 4: The independent set for the prism Cn ×K2

If there is an msvc set of G containing at most n−2 independent vertices,
say that n− 1− j (j ≥ 1) vertices contribute the weight of 3 edges each to
the cost, and the rest of the vertices will contribute the weight of at most
2 edges, then the msvc cost is greater than

3
n−1−j∑

i=1

i + 2
3(j+1)/2∑

`=1

(n− j + `− 1) =
3
2

(
n2 + n +

j2

2
+ j +

1
2

)
, or

3
n−1−j∑

i=1

i+2
(3j+2)/2∑

`=1

(n− j + `−1)+n+3+
j

2
=

3
2

(
n2 + n +

j2

2
+ j + 2

)
,

depending upon whether j is odd or even, respectively. In either case, it
is a greater cost than the one we previously obtained. Therefore, the msvc
cost of the prism Cn ×K2, if n is odd, is

µs(Cn ×K2) = 3
n(n− 1)

2
+ 2n + n + 1 =

3n2 + 3n + 2
2

,

which proves the result. 2

6 Closing remarks

Note that if a graph G has a minimal vertex cover that happens to also be an
independent set, then this set is a cost set, and an upper bound for the cost
of the graph can be easily computed. However, it is not always the case that
even a minimum vertex cover that is independent is an msvc cost set. To
see this, consider the graph G obtained from the star K1,n by subdividing
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all but one edges as shown Figure 2. The set {zn} ∪ {yi : 1 ≤ i ≤ n − 1}
is an independent vertex cover, but not an msvc cost set. However, the set
{x}∪ {zi : 1 ≤ i ≤ n− 1} is both an independent vertex cover and an msvc
cost set.

We have frequently used independent vertices as an initial subset in
finding an msvc set in this paper. That raises the question whether there
is a connected graph G such that

(a) no minimum cardinality cost set of G includes a maximum indepen-
dent set of G, or

(b) no msvc set includes a maximum independent set of G.

To see this consider the double star K2(a1, a2) of Figure 3, for a1, a2 ≥
2. Observe then that the unique maximum independent set is the set of
end vertices, but the unique minimum cardinality msvc set is given by the
central vertices. Thus the answer is yes to both questions.

There are also regular graphs whose maximum independent set is not a
subset of the minimum cardinality msvc set, as we can see in the graph of
Figure 5.
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Figure 5: Maximum independent set is not a subset of the msvc set

For this graph, the clear vertices form the unique maximum independent
set, which is not a subset of the set of solid vertices that form the minimum
cardinality msvc set S. However, there is a larger msvc set that produces
the same cost of the graph as S, and it includes the maximum independent
set of the graph.

Problem 6.1 Is there a connected regular graph G for which no msvc set
contains a maximum independent set?
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Another question might be whether choosing the vertices of maximum
degree as a subset of the cost set will always produce an msvc set. The
answer is no, as we discuss below. Note that caterpillars are a class of
graphs for which the greedy algorithm does not always produce a min-sum
vertex cover. To see this, consider the two labelings of the graphs below
(cost(G) is the cost associated with the implied labeling).

G1:

4
d

5
d1
d11
d

6
d3
d10
d

7
d2
d9
d

8
d G2:

4
d

5
d2
d11
d

6
d1
d10
d

7
d3
d9
d

8
d

Figure 6: cost(G1) = 18 and cost(G2) = 19

References

[1] T. Denley,The Independence Number of Graphs with Large Odd Girth,
Electronic J. Combin. 1 (1994) #R9 (12pp).

[2] U. Feige, L. Lovász, P. Tetali, Approximating min-sum set cover, Al-
gorithmica 40 (2004), 219–234.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H.
Freeman and Co (1978).

[4] J.B. Shearer, The Independence Number Of Dense Graphs With Large
Odd Girth, Electronic J. Combin. 2 (1995), #N2 (3pp).

12


